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(7) ABSTRACT

The present invention is a method for generating cartograms
using a base map of contiguous polygons and a vector
containing values to which areas of corresponding polygons
are scaled. The general problem is intractable, so an iterative
heuristic is proposed. The heuristic is based on “scanlines.”
The scanlines may be defined automatically (typically, by
placing a grid over the map) or entered manually (to provide
finer control over the results). At each step, one scanline is
chosen and a new candidate map is made by adjusting the
vertices of polygons intersected by the scanline, moving
them orthogonally to the scanline. A candidate solution is
accepted if it improves the solution and preserves the input
mesh’s topology. Improvement depends on metrics for area
and shape error. The solver is run until the improvement falls
below some threshold, or a time limit or maximum number
of iterations is reached

The method determines shape error created by a candidate
iterative step by first estimating a curvature function of the
polygon and then performing a Fourier transform on the
function to yield a shape representation that is relatively
independent of scale, translation and rotation of the polygon.
The proposed iterative step is accepted or discarded based in
part on the magnitude of the resulting shape error.

33 Claims, 21 Drawing Sheets
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METHOD FOR GENERATING CONTIGUOUS
CARTOGRAMS

This application claims benefit of Provisional Applica-
tion 60/359,967 filed Feb. 27, 2002.

FIELD OF THE INVENTION

The present invention relates generally to visualization of
geographically related information, and more particularly, to
a method of automatically or semi-automatically generating
a cartogram based on an input set of contiguous polygons
and an input data vector.

BACKGROUND OF THE INVENTION

Cartograms are a well-known technique for showing
geography-related statistical information, such as population
demographics, election results and epidemiological data.
The basic idea is to distort a map by resizing its regions
according to some geographically related statistical
parameter, but in a way that keeps the map recognizable.
Cartographers and geographers have used cartograms since
long before computers were available to make displays.
Because cartograms are difficult to make by hand, the study
of programs to draw them is of interest.

Other visualization techniques include the conventional
choropleth map. A choropleth map is a map divided into
regions that are shaded according to the value of a variable
for that region. High values are often concentrated in highly
populated areas, and low values may be spread out across
sparsely populated areas. Such maps therefore tend to high-
light patterns in less dense areas where few people live. In
contrast, cartograms display areas in relation to an additional
parameter, such as population. Patterns may then be dis-
played in proportion to that parameter (e.g. the number of
people involved) instead of the raw size of the area involved.
A population-based cartogram is presented in FIG. 1B. The
cartogram gives a much different impression of overall
trends, as compared with the original map (FIG. 1A).

For a cartogram to be recognizable it is important to
preserve the global shape or outline of the input map, a
requirement that has been overlooked in the past. To address
this, the inventors’ objective function for cartogram drawing
includes both global and local shape preservation. To mea-
sure the degree of shape preservation, a shape similarity
function is proposed. The function is based on a Fourier
transformation of the polygons’ curvatures. Also, because
the application goal is visualization of dynamic network
behavior, an algorithm is needed that recalculates a carto-
gram in a few seconds. No previous algorithm known to the
inventors provides adequate performance with an acceptable
level of quality for that application.

In the present application, the inventors formally define a
family of cartogram drawing problems, and show that even
simple variants are unsolvable in the general case. The
feasible variants are NP-complete; i.c., the problem is both
NP (verifiable in nondeterministic polynomial time) and NP
hard (any other NP problem can be translated into this
problem). Heuristics are therefore needed to solve the prob-
lem. Previously proposed solutions suffer from problems
with the quality of the generated drawings.

The present application describes an efficient iterative
scanline algorithm to reposition edges while preserving local
and global shapes. Scanlines may be generated
automatically, or entered interactively to guide the optimi-
zation process more closely. The algorithm is applied to a
number of example data sets, providing a detailed compari-
son of the two variants of our algorithm and previous
approaches.
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A cartogram can be seen as a generalization of an ordinary
map. In that interpretation, an arbitrary parameter vector
gives the intended sizes of the cartogram’s regions, so an
ordinary map is simply a cartogram with sizes proportional
to land area. In addition to the classical applications men-
tioned above, a key motivation for cartograms as a general
information visualization technique is to have a method for
trading off shape and area adjustments.

For a cartogram to be effective, a human must be able to
quickly understand the displayed data and relate it to the
original geographical model. Recognition, in turn, depends
on preserving basic properties, such as shape, orientation,
and contiguity. That, however, is difficult to achieve in the
general case because it is impossible to retain even the
original map’s topology. Because the generation of contigu-
ous cartograms by simultaneous optimization of those objec-
tives is difficult, most currently available algorithms are very
time-consuming.

Cartograms may be made by contiguous or non-
contiguous distortions. The non-contiguous case is much
simpler because the input map topology does not have to be
preserved. As seen in FIGS. 2A-2H, hand-made non-
contiguous cartograms have been made with overlapping or
touching circles (FIG. 2D), by eliminating some of the
original map’s adjacencies (FIG. 2C), or even by drawing
disconnected shapes over the original regions (FIG. 2B).

Previous attempts to automate the drawing of contiguous
cartograms do not yield results comparable to good hand-
made drawings. One reason is that straight lines, right angles
and other features considered important in human recogni-
tion of cartograms are obliterated. Methods that are radial in
nature such as the conformal maps proposed by W. R.
Tobler, “Cartograms and Cartosplines,” Proceedings of the
1976 Workshop on Automated Cartography and
Epidemiology, 53-58 (1976) (FIG. 2A), the radial expansion
method of S. Selvin, D. Merrill, J. Schulman, S. Sacks, L.
Bedell, and L. Wong, “Transformations of Maps to Inves-
tigate Clusters of Disease,” Social Science and Medicine, V.
26, no. 2, at 215-221 (1988) (FIG. 2F) and the line integral
method of Sabir Gusein-Zade and Vladimir Tikunov, “A
New Technique for Constructing Continuous Cartograms,”
Cartography and Geographic Information Systems, V. 20,
no. 3 at 66-85 (1993) (FIG. 2G) do not provide acceptable
results, since the shapes of the polygons are heavily
deformed. Likewise, the pseudo-cartograms described by W.
R. Tobler, “Pseudo-Cartograms,” The American
Cartographer, V. 13, no. 1 at 43-40 (1986) (FIG. 2E) expand
the lines of longitude and latitude to achieve a least root
mean square area error. Very similar drawings have been
made by approaching the problem as distortion viewing by
nonlinear magnification. Radial forces are applied by
Charles B. Jackel, “Using Arcview to Create Contiguous and
Noncontiguous Area Cartograms,” Cartography and Geo-
graphic Information Systems, V. 24, no. 2 at 101-109 (1997)
to change the size of polygons, moving the sides of each
polygon relative to its centroid. That solver, however, runs
slowly (e.g., taking 90 minutes to perform 8 iterations on a
map of 6 New England states of the U.S.) and seems to have
problems with non-convex input polygons and with self-
intersections in the output.

Another family of approaches operates on a grid or mesh
imposed on the input map. The “piezopleth” method of C.
Cauvin, C. Schneider, and G. Cherrier, “Cartographic Trans-
formations and the Piezopleth Method,” The Cartographic
Journal, V. 26, no. 2 at 96—104 (December 1989) transforms
the grid by a physical pressure load model. The cellular
automaton approach of Daniel Dorling, Area Cartograms:



US 6,853,386 B1

3

Their Use and Creation, Department of Geography (U.
Bristol, England, 1 st ed. 1996) trades grid cells until each
region achieves the desired number of cells. The combina-
torial approach of Herbert Edelsbrunner and Roman
Waupotitsch, “A Combinatorial Approach to Cartograms,”
Computational Geometry 343-360 (1997) computes a
sequence of piecewise linear homeomorphisms of the mesh
that preserve its topology. While the first method is good at
preserving the shape of the polygons, the other two methods
allow a very good fit for area but only poor shape preser-
vation.

A synthesis of both approaches was recently described in
Christopher J. Kocmoud and Donald H. House, “Continuous
Cartogram Construction,” Proceedings IEEE Visualization
197-204 (1998) (FIG. 2H). A force-based model is proposed
that alternately optimizes the shape and the area error.
Although the results are better than most other methods, the
complex optimization algorithm has a prohibitively high
execution time. For example, 18 hours is required for a
modest-sized map with 744 vertices.

The currently available solutions have two major prob-
lems: first, the high time complexity of the algorithms
restricts their use to static applications with a small number
of polygons and vertices. Second, they have very limited
shape preservation. Although the recent work by Kocmoud
and House provides nice results, some effectiveness prob-
lems remain. One problem is the significant deformation of
the global shape. In evaluating the different heuristic solu-
tions which have been proposed so far, the present inventors
have found that the insufficient preservation of the global
shape is one of the most important factors for cartograms to
be effective, and it is certainly at least as important as the
preservation of interior polygon shapes.

There is presently a need to make dynamic cartograms for
on-line network monitoring, such as display of traffic or
transaction event levels by country, state, and local regions.
That application requires cartogram generation on the fly,
and further requires generation of cartograms with maxi-
mum preservation of the global shape as well as preservation
of the shapes of the interior polygons. To the inventors’
knowledge, there is currently no currently available algo-
rithm with adequate speed to perform that function.

SUMMARY OF THE INVENTION

The present invention addresses the needs described
above by providing a method for generating a cartogram
from a plurality of contiguous polygons having vertices, and
from a vector containing values corresponding to the poly-
gons. The method includes the steps of determining a first
curvature function of a first polygon, performing a Fourier
transform of the first curvature function to calculate a first
shape value, repositioning one of the vertices of the polygon
to produce an altered polygon, determining an altered cur-
vature function of the altered polygon, performing a Fourier
transform of the altered curvature function to calculate an
altered shape value, calculating a shape distortion by com-
paring the first and the altered shape values, and deciding
whether to accept the altered polygon based on the shape
distortion.

The steps of determining curvature functions of the poly-
gons may include approximating a region surrounding each
vertex with a circular arc. The perimeter length may be
normalized to 2 for each polygon, using a radius of 7t/50 for
the circular arcs. The radius may alternatively be established
as smaller than one-half a length of a shortest edge of the

polygon.
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4

Each polygon may be represented by a series of concat-
enated straight lines and radii, the curvature function being
a square wave. The steps of determining curvature functions
may include normalizing a perimeter length for each poly-
gon. That normalized perimeter length may be 2.

The steps of performing Fourier transforms may include
computing coefficients of Fourier sums analytically. The
step of repositioning one of the vertices of the polygon may
include selecting the vertices from a set of vertices in a
region of the contiguous polygons having two edges
orthogonal to a preselected scan line. Each step of the
method may then be performed on all vertices within the
region.

The vector values may define target area values of the
corresponding polygons. In that case, the method further
includes the steps of calculating a relative area error of the
first polygon by comparing an actual area value of the first
polygon with a corresponding target area value, calculating
a relative area error of the altered polygon by comparing an
actual area value of the altered polygon with the correspond-
ing target area value, and determining whether to revert to
the first polygon by comparing the relative area error of the
altered polygon and the relative area error of the first
polygon. The relative area error of a j** polygon may be
defined as

etuat

J J
Alesire + A

J J
|Aesire = A

actual

wherein A,/ is a target area value for the j”* polygon and
A, ..l 15 an actual area value for that polygon.

The method may further include an initial step of selec-
tively removing at least one vertex from the plurality of
contiguous polygons. The vertices may be selected based on
a proximity to 180 degrees of an angle formed by adjacent
edges, or may be selected based on a length of an adjacent
edge. All interior vertices not common to more than two
polygons may be removed. The interior vertices may be
removed based on criteria different from those used to
remove vertices on a global polygon.

In another embodiment of the invention, a cartogram is
generated from a map having a plurality of contiguous map
polygons with vertices. The cartogram has a plurality of
cartogram polygons corresponding to the map polygons, the
cartogram polygons having areas proportional to values
contained in a data vector. That method includes the steps of
selecting a vertex for repositioning, the vertex having adja-
cent polygons, repositioning the selected vertex, determin-
ing an area error of the adjacent polygons based on corre-
sponding data vector values, determining a shape error of the
adjacent polygons based on a Fourier transformation of a
curvature function of a perimeter of each polygon, and
deciding whether to accept or reject the repositioning step
based on the shape error and the area error.

The curvature function may include circular arcs approxi-
mating regions surrounding each vertex of the polygons. In
that case, a perimeter length of 2w may be normalized for
each polygon, in which case a radius of the circular arcs is
7/50. Alternatively, the radius may be smaller than one half
a length of a shortest edge of the polygon.

Each polygon may be represented by a series of concat-
enated straight lines and radii, in which case the curvature
function is a square wave. The curvature function may be
normalized to a predetermined perimeter length, which may
be 2m.

Fourier sums may be analytically computed from the
Fourier transforms. The step of selecting a vertex may
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include selecting the vertex from a set of vertices in a region
of the contiguous polygons having two edges orthogonal to
a preselected scan line. Each of the steps may be performed
on all vertices within the region.

The area error of a j polygon may be defined as

erua

J J
Alesire + A

J J
1A Gesire = A

; >
actual

wherein A,/ is a target area value proportional to values
contained in the data vector for the j** polygon and A,_,,../
is an actual area value for that polygon.

As with the previous embodiment, the method may fur-
ther include the initial step of selectively removing at least

one vertex from the plurality of contiguous polygons.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a traditional map of the United States.

FIG. 1B is a population cartogram of the United States
generated using the method of the invention.

FIGS. 2A-2H are views of cartograms and pseudo-
cartograms generated by prior art methods.

FIG. 3 is a partial map of the United States illustrating a
vertex/edge notation convention.

FIGS. 4A—4G are sample polygons illustrating shape and
topology distortion.

FIG. 5 is a table showing possible constraints for carto-
gram drawing.

FIGS. 6A & 6B are sample polygons showing shape and
topology properties.

FIG. 7 is a table showing possible global polygon con-
straints for cartogram drawing.

FIG. 8 is a plot of a significance function used in the
present invention.

FIG. 9 is an algorithm for reducing global vertices accord-
ing to the invention.

FIG. 10 is an algorithm for reducing interior vertices
according to the invention.

FIGS. 11A-11C are maps of the United States showing
reduction in vertices according to the invention.

FIGS. 12A & 12B are sample polygons showing geom-
etry simplification according to the invention; FIG. 12C is a
curvature plot of the polygon of FIG. 12B.

FIGS. 13A & 13B show polygons and corresponding
curvature plots according to the invention.

FIG. 14 is a scanline algorithm according to the invention.

FIGS. 15A & 15B show sample scanlines and associated
parameters according to the invention.

FIG. 16 is an algorithm for drawing cartograms according
to the invention.

FIGS. 17A & 17B show a map of the United States with
scanlines placed according to two embodiments of the
invention.

FIGS. 18A, 18B & 18C show cartograms of the United
States produced by three different methods.

FIGS. 19A, 19B & 19C show plots of data used to
evaluate the methods that produced the cartograms of FIG.
18.

FIG. 20A s a map of the United States showing area error;
FIGS. 20B & 20C show cartograms produced by the method
of the invention showing area error.

FIGS. 21A & 21B are plots showing shape versus area
error for cartograms produced at stages of an algorithm
using interactive scanlines.
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FIG. 22 shows plots of shape versus area error for
cartograms produced using interactive and automatic scan-
lines.

FIGS. 23A, 23B & 23C are plots for evaluating the
efficiency of the method of the invention.

DESCRIPTION OF THE INVENTION

The contiguous cartogram problem may be defined in
terms of an ideal solution and topology preservation. It is
assumed that the input to the method of the invention is a
map defined by a set of connected simple polygons (a

polygonal mesh) P, and a parameter vector X that gives the
desired values for the proportional area of each polygon. The
goal is to generate contiguous cartograms and therefore, the
desired output also is a set of connected simple polygons P.
Let |p| denote the number of vertices, A(p) the area, and S(p)
the shape of a polygon p, and T(P) the topology of a set of
polygons. Then, the ideal solution of the Contiguous Car-
togram Drawing problem can be defined as follows.

A contiguous Cartogram of a set of connected polygons
P={p,, . . ., p,} with respect to the parameter vector.

?={X1, 5 X1 (Vjx;>0), is a visualization of the trans-
formed set of polygons P, where

T(?)=T(P) (Topology Preservation),

S(p)=S(p),¥j=1, . . . , k (Shape Preservation),

Ap))=x;, Vi=1 -+, k (Area Resizing).
The desired area x; of a polygon p; is defined as

k
> Ay
i=1

Xj=Xj

M

xj

=1

To simplify the description, the following assumes that
there is only one set of connected polygons (such as the
continental United States) and not multiple unconnected sets
(such as a world map). The definitions, however, may easily
be extended to multiple polygonal meshes. The heuristic
herein described operates on arbitrary maps.

Let V]-i denote the i-th vertex of polygon p;, a"j the angle
at the i-th vertex, ¢/’ the i-th edge, |¢;] the length of edge ¢/,
and CE(v) the cyclic order of edges at vertex v, as defined
by the notation shown in FIG. 3.

If it is assumed that the transformed polygons have the
same number of vertices (ie., [pJ=|p]), then one way of
formalizing the topology and shape preservation constraints
is to formalize the preservation of connecting vertices and
the preservation of edge length ratios and angles.

As to the preservation of connecting vertices, the topol-
ogy preservation T(P)=T(P) means that for each vertex veE
P the cyclic order of edges remains the same as in P. More
formally,

Vv eP,j=1,. .., ki=1,...,|p|: v/ €P,j=1, ...,k

=1, ..., [p]: CE(vV)=CE(v})

If the cartogram construction algorithm does not provide
a mapping to the original polygon set, topology preservation
is difficult to test, because as a first step, the isomorphism
problem between the two corresponding graphs must be
solved. Graph isomorphism is a difficult problem and,
therefore, efficient solutions have to maintain the topology
of the original polygon mesh or provide a mapping to the
original polygon mesh.

As to the preservation of edge length ratios and angles,
shape preservation S(p,)=S(p,) means that the edge length
ratios of the polygons and the angles are preserved
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Vi=1,. .., KceR:|e/|=c/le/|i=1, . . . Ip e/eRé/eP, 0]
Vj=1,..., kVi=1,. .., |p|-a/=a/. @)

As a simple example, a map with the topology of a
checkerboard (FIGS. 4A & 4D) is resized according to the
color of the fields, scaling white fields by a factor of 1.5 and
black fields by a factor of 0.5. That rescaling is impossible
without changing the topology or shapes. In the case of the
2x2 grid, FIG. 4B shows solutions in which shape was
maintained but topology was relaxed; FIG. 4C shows
relaxed shape. In the case of the 3x3 grid, FIG. 4E shows
relaxed topology, FIG. 4G shows relaxed shape and FIG. 4F
shows both characteristics relaxed. In general, it is impos-
sible to achieve the ideal solution. That observation may be
stated as follows: the above-described cartogram drawing
problem is unsolvable in the general case; i.e., there exist
sets of polygons and parameter vectors such that it is
impossible to obtain an ideal solution. The checkerboard
topology of FIG. 3 provides an example of such a set of
polygons for which there is no ideal cartogram solution.

To derive feasible variants of the problem, some of the
feature preservation conditions must be relaxed. If topology
is the most important property to maintain, the only other
conditions left to relax are the shape and area constraints.
Those are explored in terms of two distance functions —an
area distance function (which measures the distance of the
area of a polygon from the desired size, typically, difference
in area in the Euclidean plane) and a shape distance function
(which measures the similarity of two shapes). FIG. 5 is a
table containing an enumeration of possible constraints. The
first column 51 lists constraints that require a maximum
distance for each polygon, the second column 52 lists
constraints that require a maximum distance for the sum of
the distances of all polygons, and the third column 53 lists
minimum constraints for the sum of distances. By combin-
ing the different area and shape constraints shown in FIG. 5,
variants of the cartogram drawing problem may be con-
structed. A useful combination would be, for example, a
restriction of the solution space to solutions where the shape
of each polygon has at least a certain similarity to its original
shape and the sum of all area differences is minimal. The
following discussion relates to the different variants of the
problem and their complexity.

As noted above, in general it is impossible to find an ideal
solution of the cartogram drawing problem. It is furthermore
noted that any variant of the cartogram drawing problem that
involves the single-polygon area constraint or the all-
polygon area constraint, as tabulated in FIG. 5, is also
unsolvable in the general case, i.c. there exist sets of
polygons P and parameter vectors X, such that for any € the
problem variants do not have a valid, topology-preserving
solution.

FIG. 6A is an example of a symmetric cartogram con-
sisting of seven polygons. If the parameter vector for scaling
the polygons requires the light polygons to become larger
and the dark ones to become smaller, an impossible case can
easily be constructed. Due to the symmetric construction of
the polygons, without loss of generality we can assume that
one angle
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For the above mentioned resize requirements (triangle A
very large and triangles B very small), f—0 and therefore

> 2 x
¥=TT3

_5 >
—57?2(1 T

and thus the topology cannot be preserved, as shown in FIG.
6B.

That means that only variants of the problem that use the
minimum-area condition are solvable, and that is true for
any combination with a shape constraint. The solvability is
trivial to see since there is at least the identity solution,
which yields a perfect shape preservation but a rather bad
value for the area difference. As the following shows, the
determination of the actual solution with the minimum area
difference, however, is a computationally hard problem.

Any variant of the cartogram drawing problem that
involves the minimum-area condition is NP-complete. That
may be shown using a constrained, simplified version of the
cartogram problem called the “integer cartogram problem.”
The proof shows that a solution to the integer cartogram
problem would imply a solution of the planar 3-SAT prob-
lem which is known to be NP-hard.

In using the integer cartogram variant of the problem one
easily observes that there is little freedom to improve the
second important parameter, namely the shape. In most
cases, the minimum area condition will provide some solu-
tion that is best optimized according to the area condition but
does not take the shape similarity into account. There might
be, for example, a solution that much better preserves the
shape but is a little bit worse in area. To allow the shape
constraint to have an impact on the solution, the constraints
must be adapted. In principle, there are two possibilities. The
first is to determine the minimum area difference possible
and then allow a certain maximum deviation from this
minimum difference for finding the best shape. More
formally, this may be defined by defining two variants of the
contiguous cartogram problem.

First, given a set of polygons P, a parameter vector ?, and
an error value €, the contiguous cartogram problem may be
defined as a transformed set of polygons P for which the
following two conditions hold:

k B MIN B [§8]
Dl APy < —5=(da (). A(p)) +
=

‘ , o)
> ds(S(p,), 5(p;)~min
=

Alternatively, the area and shape distances may be normal-
ized and a weighted mean of the normalized distances may
be used as a combined optimization criterion.

Second, given a set of polygons P, a parameter vector ?,
and importance factors for the area and shape distances, the
contiguous cartogram problem may be defined as the trans-
formed set of polygons P for which
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k n
a- Y dalEp, A +b: Y ds(S(p)), SP ) min.

J=1 J=1

There are other meaningful and solvable variants of the
problem that, for example, also include the single-polygon
constraints, as demonstrated by the table of FIG. 5. Most
currently available algorithms try to solve the problem
according to one of the two variants above. While that seems
sufficient for some applications, there are others where
additional constraints seem necessary.

In addition to the shape and area constraints discussed
above with reference to FIG. 5, the inventors have found that
the global shape is one of the most important factors for
cartograms to be effective, and it is certainly at least as
important as the preservation of interior polygon shapes. In
the definition of the cartogram drawing problem, besides the
shape and area constraints discussed above, the inventors
therefore explicitly include a global shape constraint which
may be again either a single-polygon, all-polygon, or mini-
mum constraint for the global shape(s) (note that there may
be multiple global shapes as they occur, for example, on a
world map). If G,(P)(r=1 . . . 1,1<k) denotes the set of global
polygons that may be derived from the set of polygons P, the
global shape constraints may formally be described as given
in the table of FIG. 7. The final definition of the cartogram
drawing problem below uses a weighted minimum of area,
shape, and global shape constraints.

Given a set of polygons P, a parameter vector ?, and
importance factors for the area, shape, and global shape
constraints a, b, and c, the contiguous cartogram problem
may be defined as a transformed set of polygons P for which

k n
a- ) daj A +b- Y ds(S(p,), S(P) +

=1 J=1

e ) ds(S(G,(P). S(G, P min,

Turning to some observations crucial for an efficient
solution of the problem, one important observation is that in
practice, only very few vertices are actually important for
defining the shapes of the polygons. In considering the U.S.
map, for example, the inventors found that in addition to a
restricted number of outer vertices, only a limited number of
interior vertices are actually relevant. Note also that the
importance of polygons and their vertices largely depends
on their size (which is directly related to the parameter
vector) and on the length of the edges and the angles
between them. In the inventive algorithm, special consider-
ation is given to those facts and the importance of vertices
is determined based on those observations. A second obser-
vation is that, in order to obtain good results, the shape error
has to be controlled explicitly. A last observation is that the
high time complexity of most algorithms proposed previ-
ously is due to a complex and time-consuming optimization.
In most cases, however, it is possible to locally reposition
vertices and improve the area error while retaining the
shape. To obtain good solutions, the algorithm of the present
invention iteratively repositions vertices based on scanline-
defined locality measures with an explicit shape error con-
trol function.

The objective of the cartogram drawing algorithm of the
invention is a fast generation of cartograms of acceptable
quality. Because input maps often have far more vertices
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than are needed to compute good cartograms, the first step
is an intelligent decimation. That is followed by the central
heuristic, scanline-based repositioning of vertices. Vertices
of the global polygon(s) are first repositioned, followed by
interior vertices. Scanlines can be restricted to vertical and
horizontal lines determined automatically, or may be arbi-
trarily positioned line segments of any length, entered inter-
actively. In each step, the shape of the modified polygon
mesh is controlled by the shape error function. The last step
is fitting the undecimated polygons to the decimated mesh to
obtain the output cartogram. By exploiting the potential for
pre-computation and fast local optimization, the inventive
algorithm runs quickly enough to support dynamic displays
with high update rates on maps having dozens of polygonal
regions.

Edge reduction algorithms used in the inventive method
will now be discussed. As noted, preserving the global shape
is very important in making recognizable cartograms. Deci-
mation algorithm of the invention takes that into account by
simplifying the global and inner polygons differently.

Regarding reduction of the global polygon, a key obser-
vation is that the importance of the vertices of a polygon can
vary greatly. Vertices on angles near 180 degrees and those
with short edges make almost no noticeable difference in the
shape of a polygon, while others with sharp angles or long
edges have a significant effect. The basic idea of the global
polygon reduction algorithm is to rate the importance of
each vertex according to those criteria. Then, iteratively, the
least important vertices are removed. To maintain the
topology, only vertices that do not belong to multiple
polygons are removed. To formalize the global reduction
algorithm, the notion of a vertex’s importance is first defined
as

I(v)=Sig(a*)yles* "]

where e,” and e,” are the two edges of vertex vand Sig(a")
is a function denoting the significance of the angle o at
vertex v. The significance function Sig(a) is important
because different angles have a specific impact on the shape
of the polygons. Sharp angles and angles close to 90 degrees
are more important than obtuse angles and the significance
function therefore assigns higher values to sharp angles and
lower values for obtuse angles. For our algorithm, we use

(e=p?

Sig(a) = exp 202

#£{0,90,270,360}

as the significance function. That function has peaks for
a=0, 90, 270, 360 degrees and is close to zero for a=180
degrees. The function is defined for a=]0°, 360°[ and o is
chosen to be 0.2 m. FIG. 8 shows a plot of that function.

To formalize the global reduction algorithm, the global
polygon is first defined as a subset of the vertices of P. For
each polygon p;, I=1 . . . k, the portion gp; of the global
polygon GP can be defined as

gp~{vep;: ledges(v)|>Ipolygons(v)[}

The global polygon is defined as GP=

GP= U &p;-

=Lk

The algorithm for the reduction of the global polygon is
shown in FIG. 9. The algorithm initializes V(step 91) so that
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vertices are only considered for removal if they do not
belong to multiple polygons. Vertices are removed if the
induced area difference is smaller than a given constant
MaxAreaDiff (step 92). Note also that the area A(p) of a
polygon p is determined as if the polygon is perfectly scaled
according to the parameter vector X and the area difference
IA(p1)-A(p.)|— the subscript s of A, stands for scaled—is
defined as

14:5(2)-As(P2)|=(As (P VA PINA P UA(P2)

To position interior vertices, an iterative vertex removal
may again be used. A more efficient alternative is based on
the observation that for most maps only the connecting
interior vertices are important. In the preferred embodiment,
instead of iteratively removing unimportant interior vertices,
a more direct approach is taken by removing all vertices not
common to more than two polygons (non-connecting
vertices). In some cases, the shape deformation and area
error introduced by that reduction is unacceptably high. A
few additional vertices are therefore re-introduced. The
complete algorithm is shown in FIG. 10.

As an example of the reduction technique of the
invention, the interior vertices of a polygon mesh containing
743 interior vertices (FIG. 11A) are reduced to only the 204
interior vertices common to more than two polygons (FIG.
11B). A few additional vertices are re-introduced in the final
polygon containing 343 interior vertices (FIG. 11C). In
practice, only a few polygons need the additional vertices, so
the likelihood of re-introducing vertices that were removed
is low.

The main cartogram drawing algorithm will now be
discussed. The algorithm incrementally repositions the ver-
tices along a series of scanlines. A scanline is a line segment
of arbitrary length and position. Each scanline defines a scan
section, orthogonal to the scanline. All points within a scan
section are repositioned in a single step. For each section on
a scanline, a target scaling factor for each of its polygons is
determined according to their area error factors. Vertices are
then repositioned according to the polygon scaling factors
and distances to the scanline. The repositioning may be
parallel or orthogonal to the scanlines. If the shape error
introduced by applying a scanline exceeds some threshold,
its candidate vertex repositionings are discarded.

Scanlines should be applied to parts of the map where the
area error is large and there is still potential for improve-
ment. A simple approach to scanline generation is to use
horizontal and vertical line segments positioned on a regular
grid. Significantly better results can be obtained by a manual
scanline placement, guided by the shape of the input poly-
gons and the local potential for improvement. Note that the
incremental repositioning of vertices per scanline applica-
tion is intentionally small, compared to the expected change
in area. That means the same scanline may need to be
applied many times to make large adjustments in an area.

Before describing the main algorithm, its three main
components will be introduced: the area error function, the
shape similarity function, and the scanline algorithm.

The area error function is directly related to the objective
of cartogram generation; i.e., to obtain a set of polygons
where the area of the polygons corresponds to values given
in a data vector X. In each step of the algorithm, the area
error function is needed to determine the reduction of the
area error achieved by applying a given
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actual

Al + AL

desire actual

J J
i |Adesire = A
el =

Hence, the area error for the set of polygons P is defined as

k .
Ep - E Ej Aéexire

rel rel T,

j
D Al
=1

=1

In addition to reducing area error, the cartogram genera-
tion process also employs a shape similarity function that
aims at retaining the original shapes. To assess shape
preservation, a shape similarity function is needed that
compares the new shape of a polygon with its original shape.
Defining a useful shape similarity function is in itself a
difficult problem, since the similarity measure should be
translation-invariant, scale-invariant, and at least partially
rotation-invariant. From CAD research it is known that the
Euclidean distance in Fourier space is useful for measuring
shape similarity. To gain invariance against translation,
rotation, and scaling, the algorithm uses the Fourier trans-
formation of the differential geometric curvature of the
polygons, instead of the polygons themselves, and normal-
izes the arc length of the polygons to 2mt. Using the curvature
guarantees translation- and rotation-invariance, and normal-
izing the arc length guarantees scale-invariance.

In the following, it is assumed that the polygons are
transformed into a normalized parameterized polygon con-
tour function p:[0,21]—>R?. Then, curvature C of the poly-
gons may be defined as

C:(R—R*)—(R—R?).
The Fourier transformation F is a transformation
F:(R—R%)—R",

determining the Fourier coefficients for a given curvature
function in d-dimensional Fourier space. The shape similar-
ity of two polygons p and p can then be defined as

ds(S(p)s SEN=dpucid F(C(P)), FCP))-

In the following, the curvature transformation C and the
Fourier transformation F are described in more detail.

In general, the curvature of a polygon defined as a
parameterized function is mathematically undefined because
the second derivative is not continuous. That problem can be
avoided by approximating a polygon 120 (FIG. 12A) by
replacing each vertex 121, 122, 123 with a very small
circular arc 125, 126, 127, shown in FIG. 11B. That yields
a new geometric object 128 of which the first derivative is
continuous. The curvature of that object is defined in sec-
tions; concatenating those sections yields the curvature as
square wave function 129 (FIG. 120).

To describe the curvature transformation in more detail,
this discussion will focus on two adjacent edges e, ; and e,.
Those edges coincide in vertex v; with an angle ;. For the
polygon containing v;, the curvature function c(t), describ-
ing the differential geometric curvature of the approximated
polygon, may be easily computed, because the curvature of
a circle segment with radius r is a constant function 1/r and
the curvature of a straight line is a constant zero function.
The arc length of the circle segment may be calculated by
substituting vertex v; by b=|a|r. For c(t), we therefore
obtain
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Vr if (6, =b; /2> 1> 1, +bp)

Ci(f)={ 0

The curvature of an arbitrary polygon p is

otherwise

Ipl=1

() = Z e (@),

k=0

An example of a graph of the curvature function c(t) for the
approximation of the polygon section of FIG. 12A is shown
in FIG. 12C. In another example, the curvature function 135
of FIG. 13B is identical for two polygons p, and p, shown
in FIG. 13A under translation-invariance, rotation-
invariance, and scale-invariance.

The approximation of the original polygon, and in par-
ticular the choice of r, influences the curvature function. If
the radius r of the circle segment is reduced, 1/r will be
increased while b, will be decreased. That causes c(t) to
become narrower and the amplitude of square waves to
become higher, while the approximation of the polygon
converges against the polygon itself. On the other hand, c(t)
becomes difficult to handle numerically. An adequate value
for r that has proven useful for our application is 7/50 for
polygons with a normalized length of 2z. The inventors have
found that the similarity function is quite robust against a
sub optimal choice of 1, as long as r is smaller than half of
the length of the shortest edge since otherwise individual
square wave functions may overlap.

The next step is computing the Fourier transformation F
of the curvature. The principle of the Fourier transformation
is to approximate a function by summing up sine and cosine
functions with certain parameters. The quality of the
approximation is improved by increasing the degree d of the
Fourier approximation, which means to successively sum up
cos(x), sin(x), cos(2x), sin(2x), . . . , cos(kx), sin(kx). More
formally, the Fourier approximation of a function f with a
period of 27 is defined as

F(x) = H_ZOZ (agcos(kx) + by sin(kx))
k=1

where the coefficients a, and b, are defined as

1o L=
a = ;L f(x)cos(kx)dx and by = ;fo S (x)sin(kx) d x.

In general, integrals of the form [ f(x)sin(x)dx are difficult
to solve analytically. For the special case where f(x) is a
square wave function, however, the integral can be easily
determined. Let us assume that f(x) has a value of 1/r in the
interval [u, v] and is zero elsewhere. Since the value of the
integral is zero outside of [u, v] it is necessary to integrate
only from u to v. Therefore, it is possible to calculate a, and
b, as

a = L (sin(kv) — sin(ku)) and b, = L(cos(kv) — cos(ku)).
nkr nkr

To determine the Fourier coefficients of the curvature
function ¢(t) of the whole polygon p, we only have to sum
up the above formula c(t) for all vertices vi of the polygon.
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We obtain the following formulas for the Fourier coeffi-
cients:

| ekt

= Z4 %(Sin(k([i + @)) —sin(k([‘. n W_zr”)))
e 8! ol 20 21

The calculation of a, and b, can be done in O(|p|) time,
and the calculation of all coefficients can be done in O(Jp|d),
where d is the degree of the Fourier sum. Note that it is
possible to compute the coefficients of the Fourier sum
analytically, and therefore not to run into numerical prob-
lems such as finding the right sample rate. Experimental
results show that the Fourier transformation provides a good
approximation of the polygons and their curvature function
even for rather small d.

An important feature of the cartogram drawing algorithm
of the present invention is the scanline heuristic, which
incrementally repositions vertices along scanlines. A scan-
line sl is a line segment of arbitrary position and length and
is partitioned into n portions of length

Isd]
n

As shown in FIG. 15A, the scanline section points
sp{i=0 . . . n) define n+1 sections (e.g., sections 150a, 150b)
of the polygon mesh 152, which are orthogonal to the
scanline 155. In one step of the scanline algorithm, all
vertices veV; within a certain distance (distance 157)

=

of I, are considered for incremental repositioning. Let SF; be
the set of polygons (by index number) that have at least one
vertex in scanline section i (i=0 . . . n). Then, the scaling
factor SF; is determined according to the area error of all
polygons p in section i:

X —A X
SF; = const- ~r (pr) T
Z A 3

res;
leS;

Next, the direction o(v) of a vertex v is determined and the
scaling factor SF, is applied to reposition the vertex. The
repositioning can be done either in the direction of the
scanline (direction=scanline) or in the direction of the sec-
tion line 1; (FIG. 15A). The algorithm is shown in FIG. 14.
In a preferred embodiment, the scanline sections span the
full range orthogonal to the scanline of the polygon net.
Alternatively, the changes may be restricted to be local in
both directions by limiting the considered polygons to those
close to the scanline, for example, within a circle 159 (FIG.
15B) of radius §. That option is not reflected in the algorithm
shown in FIG. 14.

Having defined the components of the cartogram drawing
algorithm, the main procedure is now described. The algo-
rithm assumes as input a set of polygons P, a scaling vector
of the desired statistical parameter X and a set of scanlines
SL, which can be determined automatically or manually as
described below. Output is the modified set of polygons P
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that describes the cartogram. The algorithm is shown in FIG.
16 and works as follows. For each scanline (step 160), the
algorithm applies the scanline transformation (step 161) and
checks the results (step 162). If the area difference E,,
introduced by the scanline transformation is below a certain
threshold e, and the shape distortion is below a certain
threshold €, then the changes are retained and otherwise
discarded. Then, the algorithm proceeds with the next scan-
line until all scanlines are applied in the same way. At that
point, the algorithm checks whether in applying all scanlines
an improvement of the area error has been obtained. If that
is the case, the algorithm applies all scanlines again and
repeats the entire procedure until no further improvement is
reached (step 165) (area improvement below 68). Since the
area error improvement must be positive and above the
threshold ¢ in each iteration, the area error is monotonously
decreasing and termination of the algorithm is guaranteed.
Note that in applying an individual scanline, the algorithm
is allowed to potentially increase the area error, to allow
escaping local optima. Also, notice that after applying a
scanline, all the other ones remaining to be processed must
be transformed as well, so that they correspond properly to
the transformed map.

The set of scanlines SL used by the algorithm may be
defined either automatically or interactively. The automatic
generation of scanlines uses a fixed grid of horizontal and
vertical scanlines. An example of an automatically generated
scanline grid 171 generated to cover a polygon grid 172
representing the continental United States is shown in FIG.
17A. The grid’s resolution may be varied, but within reason
that has only a minor influence on the result. Because only
those scanlines that do not induce a higher shape and area
error are applied, generating many useless scanlines causes
a potential loss in efficiency, but does not affect the quality
of the result.

The inventors have found that the best cartograms seem to
be obtained when the scanlines are well adapted to the shape
of the input polygons and are placed in areas with a high
potential for improvement. Automatic placement based on
those criteria is difficult to achieve so, in a preferred embodi-
ment of the invention, the user is allowed to interactively
position the scanlines depending on the results of the pre-
vious steps. The user usually starts with scanlines in regions
with a high area error. The scanlines seem to work best if
they are positioned such that they are either parallel or
orthogonal to the contour of the global polygon. An example
a scanline 175 is shown in FIG. 17B.

Once the scanlines are specified for a given polygon
mesh, they may be stored and re-applied later to different
data on the same map. That makes it practical to generate a
continuous time series of cartograms, without user interac-
tion in each step. While the generated cartogram may not be
as good as if the scanlines were specified anew, the results
seem sufficient for many applications. In the inventors’
experience, manual positioning of scanlines is not difficult
and can be done quickly. For example, the scanlines shown
in FIG. 17B took about 5 minutes to enter. Note that parts of
the map such as region 176 that need large changes have
many scanlines of varying lengths, while other parts have
very few scanlines.

The inventors have implemented the algorithm described
above in C using the LEDA library described in Kurt
Mehlhom and Stefan Naher, “The LEDA Platform of Com-
binatorial and Geometric Computing,” Cambridge Univer-
sity Press (Ist ed. 1999), http://www.mpi-sb.mpg.de/-
~mehlhorn/LEDAbook.html. The algorithm was run on a
number of different example applications. Unless noted
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otherwise, the tests were performed on a 1 GHz Pentium
computer with 128 Mbytes of main memory. The results of
several different approaches are compared below. Although
the focus is on efficiency, the examples show that the
algorithm of the inventions also provides results of very high
quality. For most of the examples, a state map of the
continental U.S. serves as a running example.

For purposes of comparison, FIG. 18A shows a popula-
tion cartogram generated by the technique of Tobler (supra),
18B shows a cartogram generated by Kocmoud & House
(supra) and 18C show population cartograms generated by
the algorithm of the present invention. A visual comparison
shows that the presently-described approach offers compa-
rable if not better visual results, with the geography of the
United States being clearly perceivable.

To evaluate the results analytically, a total area error Ere,
is compared for all three approaches. As can be seen in FIG.
19A, the presently described algorithm 191 provides better
results 191 than those of Tobler 193 and even improves upon
the results 192 of the complex optimization-based approach
of Kocmoud and House. Since the total area error is basi-
cally an average over the state-wise area error, the area error
is shown state by state in FIG. 19B, sorted according to the
area error. The resulting plot 194 reveals that for most states
the present approach 197 provides a much better area error
than that of the Tobler cartogram 195 and a slightly better
area error than that of the Kocmoud & House cartogram 196,
with very few exceptions. Note that the Tobler cartogram
was not optimized according to the error measure described
herein, which puts higher weights on polygons that should
become large. Since many of the polygons with large
weights still have a large area error in the Tobler cartogram,
the overall improvement of E_, by the Tobler cartogram is
low.

In terms of efficiency, the present approach is faster than
existing techniques. While previous approaches need hours
or even days to compute a solution, an implementation of the
presently described algorithm runs in a matter of seconds. A
comparison is shown in FIG. 19C, which assumes that both
algorithms run on a 120 MHz computer with 32 MByte
RAM. A scanline-based heuristic 198 needs about 25 sec-
onds while the Kocmoud & House approach 199 needs
about 16 hours, making the present approach about 2000
times faster.

One important aspect of the cartogram drawing algorithm
of the invention is the specification of the scanlines. As
mentioned previously, the present algorithm allows scan-
lines to be determined automatically or interactively. Those
two approaches are now compared with respect to effec-
tiveness (quality of the results) and efficiency (time needed
to produce the results).

An original US map 200 (FIG. 20A) is distorted in this
example using automatically generated scanlines (FIG. 20B)
and interactively generated scanlines (FIG. 20C). Both
approaches provide high quality cartograms. The area error
E, , is 0.36 for the original map; is 0.21 for the cartogram
generated with automatically placed scanlines and is 0.10
for the cartogram generated with interactively placed scan-
lines. Shape distortion, however, appears to be higher for the
interactively placed scanlines. To measure shape distortion,
the inventors use the Fourier-based shape similarity function
described above. The results, shown in FIGS. 21A and 21B,
show a tradeoff between area and shape error. Those errors
are shown for each incremental step of the algorithm, for the
interior state polygons (FIG. 21A) and the global polygon
(FIG. 21B). Each point corresponds to one intermediate
result of the algorithm (with interactive scanlines). In the
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beginning, there is a large area error E,_=0.36. By applying
a scanline, the area error is improved but the shape becomes
more distorted. It is therefore natural that the curve goes
from the lower right to the upper left until the area error is
small enough or the shape distortion reaches some threshold.
A similar behavior can be observed for the global shape.
There is however a slight difference: while the area error still
improves from one step to the next, the distortion global
shape in some cases even gets better.

Comparing the area-shape error tradeoff of interactive
versus automatic scanlines reveals some interesting proper-
ties of the algorithm. As can be seen in FIG. 22, early in the
run, both approaches have a similar trend in shape-area error
tradeoff. At a certain point, however, the automatically
generated scanlines lead to a deterioration in area error that
subsequent scanlines are not able to improve. In case of
interactively generated scanlines, the area error continues to
improve by smaller and smaller increments. Note the jump
in shape error for an area error of about E,_ =0.15. At that
point, the direction was switched from scanline to section
line as described above, which leads to a continued improve-
ment of the area error but a considerable deterioration of the
shape error.

The inventors also performed extensive experiments to
evaluate the efficiency of the inventive algorithm. The time
needed to run the algorithm on the U.S. population data is
about 2 seconds. If the parameter vector is changed, the time
needed for the reduction step versus the scanline execution
varies slightly between 40% and 60%. FIG. 23A shows the
percentages needed for the two steps of the algorithm for
nine different parameter vectors, namely long-distance tele-
phone call volume data by state for nine time steps during a
day. Note that the reduction step can be precomputed so that
it does not have to be re-run each time the algorithm is
executed.

The effect of changing the length of scanlines was also
analyzed. FIG. 23B shows the results for the 144 interac-
tively defined scanlines for the US population data. The time
needed to process a scanline depends only on the number of
scanline sections, which in turn depends only on the length
of the scanlines. That means that a steep increase corre-
sponds to long scanlines and a shallow increase corresponds
to short scanlines. The figure reveals that shorter scanlines
are more likely toward the end of the process and are used
for fine tuning some portions of the polygon. Nevertheless,
some shorter scanlines are applied regularly in the process as
indicated by the irregularities in the curve.

Another efficiency analysis was aimed at testing the
dependency of the algorithm on the number of polygons.
Since there are not many different real data sets with a
widely varying number of polygons, the inventors generated
synthetic data sets, namely checker boards with an increas-
ing number of rectangular polygons. Random numbers were
then used for initializing the parameter vectors. FIG. 23C
shows the results of those tests, revealing a clear linear
dependency on the number of polygons. The algorithm
requires about 16 seconds for a polygon net consisting of
90,000 polygons. Note, however, that in this case the num-
ber of vertices per polygon is very low (four) and a reduction
of vertices is not necessary.

The foregoing Detailed Description is to be understood as
being in every respect illustrative and exemplary, but not
restrictive, and the scope of the invention disclosed herein is
not to be determined from the Detailed Description, but
rather from the claims as interpreted according to the full
breadth permitted by the patent laws. For example, while the
measurement of shape error using a Fourier transform of a
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curvature function is described in combination with a scan-
line algorithm for vertex placement, that shape error tech-
nique may be used with other vertex placement methods
while remaining within the scope of the invention. It is to be
understood that the embodiments shown and described
herein are only illustrative of the principles of the present
invention and that various modifications may be imple-
mented by those skilled in the art without departing from the
scope and spirit of the invention.

What is claimed is:

1. A method for generating a cartogram from a plurality
of contiguous polygons having vertices, and from a vector
containing values corresponding to the polygons, the
method comprising the steps of:

determining a first curvature function of a first polygon;

performing a Fourier transform of the first curvature
function to calculate a first shape value;

repositioning one of the vertices of the polygon to pro-
duce an altered polygon;

determining an altered curvature function of the altered
polygon;

performing a Fourier transform of the altered curvature
function to calculate an altered shape value;

calculating a shape distortion by comparing the first and
the altered shape values; and

deciding whether to accept the altered polygon based on

the shape distortion.
2. The method of claim 1, wherein the steps of determin-
ing curvature functions of the polygons include approximat-
ing a region surrounding each vertex with a circular arc.
3. The method of claim 2, further comprising the step of
normalizing a perimeter length of 2m for each polygon, and
wherein a radius of the circular arcs is w/50.
4. The method of claim 2, wherein the radius is smaller
than one half a length of a shortest edge of the polygon.
5. The method of claim 1, wherein each polygon is
represented by a series of concatenated straight lines and
radii, and the curvature function is a square wave.
6. The method of claim 1, wherein the steps of determin-
ing curvature functions include normalizing a perimeter
length for each polygon.
7. The method of claim 6, wherein the perimeter length is
normalized to 2m.
8. The method of claim 1, wherein the steps of performing
Fourier transforms include computing coefficients of Fourier
sums analytically.
9. The method of claim 1, wherein the step of reposition-
ing one of the vertices of the polygon includes selecting the
vertices from a set of vertices in a region of the contiguous
polygons having two edges orthogonal to a preselected scan
line.
10. The method of claim 9, wherein each of the steps is
performed on all vertices within the region.
11. The method of claim 1, wherein the vector values
define target area values of the corresponding polygons, and
further comprising the steps of:
calculating a relative area error of the first polygon by
comparing an actual area value of the first polygon with
a corresponding target area value;

calculating a relative area error of the altered polygon by
comparing an actual area value of the altered polygon
with the corresponding target area value; and

determining whether to revert to the first polygon by
comparing the relative area error of the altered polygon
and the relative area error of the first polygon.
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